home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Freelog 125
/
Freelog_MarsAvril2015_No125.iso
/
Musique
/
Quod Libet
/
quodlibet-3.3.0-installer.exe
/
bin
/
sets.pyc
(
.txt
)
< prev
next >
Wrap
Python Compiled Bytecode
|
2014-12-31
|
16KB
|
546 lines
# Source Generated with Decompyle++
# File: in.pyc (Python 2.7)
"""Classes to represent arbitrary sets (including sets of sets).
This module implements sets using dictionaries whose values are
ignored. The usual operations (union, intersection, deletion, etc.)
are provided as both methods and operators.
Important: sets are not sequences! While they support 'x in s',
'len(s)', and 'for x in s', none of those operations are unique for
sequences; for example, mappings support all three as well. The
characteristic operation for sequences is subscripting with small
integers: s[i], for i in range(len(s)). Sets don't support
subscripting at all. Also, sequences allow multiple occurrences and
their elements have a definite order; sets on the other hand don't
record multiple occurrences and don't remember the order of element
insertion (which is why they don't support s[i]).
The following classes are provided:
BaseSet -- All the operations common to both mutable and immutable
sets. This is an abstract class, not meant to be directly
instantiated.
Set -- Mutable sets, subclass of BaseSet; not hashable.
ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
An iterable argument is mandatory to create an ImmutableSet.
_TemporarilyImmutableSet -- A wrapper around a Set, hashable,
giving the same hash value as the immutable set equivalent
would have. Do not use this class directly.
Only hashable objects can be added to a Set. In particular, you cannot
really add a Set as an element to another Set; if you try, what is
actually added is an ImmutableSet built from it (it compares equal to
the one you tried adding).
When you ask if `x in y' where x is a Set and y is a Set or
ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
what's tested is actually `z in y'.
"""
from itertools import ifilter, ifilterfalse
__all__ = [
'BaseSet',
'Set',
'ImmutableSet']
import warnings
warnings.warn('the sets module is deprecated', DeprecationWarning, stacklevel = 2)
class BaseSet(object):
'''Common base class for mutable and immutable sets.'''
__slots__ = [
'_data']
def __init__(self):
'''This is an abstract class.'''
if self.__class__ is BaseSet:
raise TypeError, 'BaseSet is an abstract class. Use Set or ImmutableSet.'
def __len__(self):
'''Return the number of elements of a set.'''
return len(self._data)
def __repr__(self):
"""Return string representation of a set.
This looks like 'Set([<list of elements>])'.
"""
return self._repr()
__str__ = __repr__
def _repr(self, sorted = False):
elements = self._data.keys()
if sorted:
elements.sort()
return '%s(%r)' % (self.__class__.__name__, elements)
def __iter__(self):
'''Return an iterator over the elements or a set.
This is the keys iterator for the underlying dict.
'''
return self._data.iterkeys()
def __cmp__(self, other):
raise TypeError, "can't compare sets using cmp()"
def __eq__(self, other):
if isinstance(other, BaseSet):
return self._data == other._data
return None
def __ne__(self, other):
if isinstance(other, BaseSet):
return self._data != other._data
return None
def copy(self):
'''Return a shallow copy of a set.'''
result = self.__class__()
result._data.update(self._data)
return result
__copy__ = copy
def __deepcopy__(self, memo):
'''Return a deep copy of a set; used by copy module.'''
deepcopy = deepcopy
import copy
result = self.__class__()
memo[id(self)] = result
data = result._data
value = True
for elt in self:
data[deepcopy(elt, memo)] = value
return result
def __or__(self, other):
'''Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
'''
if not isinstance(other, BaseSet):
return NotImplemented
return None.union(other)
def union(self, other):
'''Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
'''
result = self.__class__(self)
result._update(other)
return result
def __and__(self, other):
'''Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
'''
if not isinstance(other, BaseSet):
return NotImplemented
return None.intersection(other)
def intersection(self, other):
'''Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
'''
if not isinstance(other, BaseSet):
other = Set(other)
if len(self) <= len(other):
little = self
big = other
else:
little = other
big = self
common = ifilter(big._data.__contains__, little)
return self.__class__(common)
def __xor__(self, other):
'''Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
'''
if not isinstance(other, BaseSet):
return NotImplemented
return None.symmetric_difference(other)
def symmetric_difference(self, other):
'''Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
'''
result = self.__class__()
data = result._data
value = True
selfdata = self._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
for elt in ifilterfalse(otherdata.__contains__, selfdata):
data[elt] = value
for elt in ifilterfalse(selfdata.__contains__, otherdata):
data[elt] = value
return result
def __sub__(self, other):
'''Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
'''
if not isinstance(other, BaseSet):
return NotImplemented
return None.difference(other)
def difference(self, other):
'''Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
'''
result = self.__class__()
data = result._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
value = True
for elt in ifilterfalse(otherdata.__contains__, self):
data[elt] = value
return result
def __contains__(self, element):
"""Report whether an element is a member of a set.
(Called in response to the expression `element in self'.)
"""
try:
return element in self._data
except TypeError:
transform = getattr(element, '__as_temporarily_immutable__', None)
if transform is None:
raise
return transform() in self._data
def issubset(self, other):
'''Report whether another set contains this set.'''
self._binary_sanity_check(other)
if len(self) > len(other):
return False
for elt in ifilterfalse(other._data.__contains__, self):
return False
return True
def issuperset(self, other):
'''Report whether this set contains another set.'''
self._binary_sanity_check(other)
if len(self) < len(other):
return False
for elt in ifilterfalse(self._data.__contains__, other):
return False
return True
__le__ = issubset
__ge__ = issuperset
def __lt__(self, other):
self._binary_sanity_check(other)
if len(self) < len(other):
pass
return self.issubset(other)
def __gt__(self, other):
self._binary_sanity_check(other)
if len(self) > len(other):
pass
return self.issuperset(other)
__hash__ = None
def _binary_sanity_check(self, other):
if not isinstance(other, BaseSet):
raise TypeError, 'Binary operation only permitted between sets'
def _compute_hash(self):
result = 0
for elt in self:
result ^= hash(elt)
return result
def _update(self, iterable):
data = self._data
if isinstance(iterable, BaseSet):
data.update(iterable._data)
return None
value = None
if type(iterable) in (list, tuple, xrange):
it = iter(iterable)
while True:
try:
for element in it:
data[element] = value
return None
continue
except TypeError:
transform = getattr(element, '__as_immutable__', None)
if transform is None:
raise
data[transform()] = value
continue
else:
for element in iterable:
try:
data[element] = value
continue
except TypeError:
transform = getattr(element, '__as_immutable__', None)
if transform is None:
raise
data[transform()] = value
continue
class ImmutableSet(BaseSet):
'''Immutable set class.'''
__slots__ = [
'_hashcode']
def __init__(self, iterable = None):
'''Construct an immutable set from an optional iterable.'''
self._hashcode = None
self._data = { }
if iterable is not None:
self._update(iterable)
def __hash__(self):
if self._hashcode is None:
self._hashcode = self._compute_hash()
return self._hashcode
def __getstate__(self):
return (self._data, self._hashcode)
def __setstate__(self, state):
(self._data, self._hashcode) = state
class Set(BaseSet):
''' Mutable set class.'''
__slots__ = []
def __init__(self, iterable = None):
'''Construct a set from an optional iterable.'''
self._data = { }
if iterable is not None:
self._update(iterable)
def __getstate__(self):
return (self._data,)
def __setstate__(self, data):
(self._data,) = data
def __ior__(self, other):
'''Update a set with the union of itself and another.'''
self._binary_sanity_check(other)
self._data.update(other._data)
return self
def union_update(self, other):
'''Update a set with the union of itself and another.'''
self._update(other)
def __iand__(self, other):
'''Update a set with the intersection of itself and another.'''
self._binary_sanity_check(other)
self._data = (self & other)._data
return self
def intersection_update(self, other):
'''Update a set with the intersection of itself and another.'''
if isinstance(other, BaseSet):
self &= other
else:
self._data = self.intersection(other)._data
def __ixor__(self, other):
'''Update a set with the symmetric difference of itself and another.'''
self._binary_sanity_check(other)
self.symmetric_difference_update(other)
return self
def symmetric_difference_update(self, other):
'''Update a set with the symmetric difference of itself and another.'''
data = self._data
value = True
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in other:
if elt in data:
del data[elt]
continue
data[elt] = value
def __isub__(self, other):
'''Remove all elements of another set from this set.'''
self._binary_sanity_check(other)
self.difference_update(other)
return self
def difference_update(self, other):
'''Remove all elements of another set from this set.'''
data = self._data
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in ifilter(data.__contains__, other):
del data[elt]
def update(self, iterable):
'''Add all values from an iterable (such as a list or file).'''
self._update(iterable)
def clear(self):
'''Remove all elements from this set.'''
self._data.clear()
def add(self, element):
'''Add an element to a set.
This has no effect if the element is already present.
'''
try:
self._data[element] = True
except TypeError:
transform = getattr(element, '__as_immutable__', None)
if transform is None:
raise
self._data[transform()] = True
def remove(self, element):
'''Remove an element from a set; it must be a member.
If the element is not a member, raise a KeyError.
'''
try:
del self._data[element]
except TypeError:
transform = getattr(element, '__as_temporarily_immutable__', None)
if transform is None:
raise
del self._data[transform()]
def discard(self, element):
'''Remove an element from a set if it is a member.
If the element is not a member, do nothing.
'''
try:
self.remove(element)
except KeyError:
pass
def pop(self):
'''Remove and return an arbitrary set element.'''
return self._data.popitem()[0]
def __as_immutable__(self):
return ImmutableSet(self)
def __as_temporarily_immutable__(self):
return _TemporarilyImmutableSet(self)
class _TemporarilyImmutableSet(BaseSet):
def __init__(self, set):
self._set = set
self._data = set._data
def __hash__(self):
return self._set._compute_hash()